segunda-feira, 11 de julho de 2016

MATEMÁTICA: CÁLCULOS COM BOLICHE, DADOS E ARGOLAS



Objetivo: 

- Construção e ampliação de um repertório de cálculos memorizados.
- Elaboração de procedimentos de cálculo mental.
- Resolução e elaboração de problemas a partir de contextos de jogo.

Conteúdo: 

- Cálculo mental de adições e multiplicações.
- Resolução de problemas.

 Ano: 2º e 3º

Tempo estimado: Em torno de 15 aulas.
Material necessário: Dados, argolas, garrafas pet, cartolina, papel sulfite, etiquetas e fita colante para a confecção dos jogos e tabelas de resultados.
Desenvolvimento
1ª etapa: Introdução
Nessa etapa, o objetivo é verificar quais cálculos os alunos já resolvem com autonomia e quais ainda não. Para isso, organize uma avaliação diagnóstica em que apareçam cálculos como adições cujo resultado seja igual a dez (1+9, 2+8, 3+7, 4+6,5+5), de números de um algarismo (8+3, 6+7 etc.), adições de parcelas iguais (5+5, 4+4, etc.), de números redondos ou terminados em cinco (20+20, 30+60, 25+25, 45+15 etc.) e outros terminados em diferentes unidades (63+15 etc.). Ao orientar a classe para a realização dessa atividade, peça que cada um registre, ao final da avaliação, quais cálculos eles já sabiam o resultado, quais foi possível calcular mentalmente e quais foi preciso fazer uso do cálculo escrito (seja por meio de estratégias pessoais ou do algoritmo). Explique para a turma que é importante realizar a atividade individualmente para que possa conhecer bem o que cada um já sabe sobre cálculos de adição e, assim, propor boas atividades para todos.

Sempre que apresentar um novo jogo, distribua uma cópia da regra para cada um e leia conjuntamente com a turma.

Dados:
Regra do Jogo de Dados - Melhor de 5: Lance dois dados ao mesmo tempo, some o resultado obtido e o anote em uma folha avulsa. Após cinco rodadas, compare o resultado final com o de seu colega. Ganha quem tiver a maior pontuação.
Há uma grande variedade de jogos de dados. Por isso, é preciso escolher qual versão será usada em função das necessidades da turma. Por exemplo, se você tiver alunos que ainda não tenham memorizado os resultados das adições de números de um algarismo (1+1, 2+2, 2+1, 3+5, 6+4, etc.) é interessante propor o jogo de dados, como por exemplo o "Melhor de 5", que pode ser realizado em duplas ou trios.

Boliche:
Regra do Jogo de Boliche: Cada garrafa possui uma pontuação que varia de acordo com a sua cor: amarelas (3 pontos), azuis (4), verdes (5) e vermelhas (6). Jogue a bola e tente derrubar o máximo de garrafas possíveis. Atenção: para fazer o lançamento não é permitido ultrapassar a linha traçada no chão pela professora. Cada aluno pode fazer apenas três lances. Some os pontos das garrafas que conseguiu derrubar. Ganha aquele que fizer mais pontos.
Antes de iniciar o jogo com a sala, organize as garrafas em forma de um triângulo (na base quatro garrafas, em seguida três, depois duas e, na ponta, uma garrafa - aqui seria melhor inserir um desenho) e faça uma linha com giz para indicar o local onde os alunos devem fazer o lançamento.
 
No jogo de boliche, pode-se atribuir uma pontuação única para as garrafas para trabalhar com somas sucessivas de um mesmo número e favorecer a construção de um repertório multiplicativo (por exemplo, se as garrafas valem cinco pontos e, uma criança derruba 7 garrafas, ao longo de suas tentativas, terá que somar 5+5+5+5+5+5+5 ou fazer 7x5, para calcular quantos pontos obteve).

Outra alternativa é atribuir pontos diferentes, anotados nas garrafas com etiquetas, para favorecer a construção de diferentes procedimentos aditivos (por exemplo, se o aluno tiver derrubado cinco garrafas com os seguintes pontos: 13, 17, 25, 12 e 10, pode primeiro somar todas as dezenas 10+10+20+10+10=60 e depois as unidades: 3+7 dá 10, 10+5 dá 15, 15 +2 dá17, então juntar tudo: 60+17 é igual a 77) ou fazer primeiro as somas mais fáceis ("eu sei que 3 + 7 dá 10, então 17+13 é igual a 10+10+10 que dá 30, 25 mais 2 dá 27 e mais 10 dá 37 e se somar o 10 que falta, 47, esse número mais o 30 que eu tinha achado primeiro dá 77).

Argolas:
Regra do Jogo de Argolas: Cada aluno terá três chances para encaixar cada uma das três as argolas nas garrafas. O objetivo é acertar aquelas que têm maior pontuação. Ao final, some quantos pontos fez e o registre em uma folha avulsa. Compare o resultado com o de seus colegas. Ganha quem fizer mais pontos.

Encape cada garrafa pet com uma cor (por exemplo: azul, verde, amarela, vermelha e preta) e defina um ponto para cada cor, por exemplo: azul=15, verde=25, amarela=35, vermelha=45 e preta=55). Assim como no jogo de boliche, é necessário definir um espaço para os lançamentos, então trace uma linha de giz no chão e combine que não se pode ultrapassá-la na hora de fazer os lançamentos.
 
Proponha os jogos algumas vezes, garanta que todas as crianças circulem por todos eles. Certifique-se de que todos compreenderam o funcionamento de cada um deles. Enquanto realizam a atividade, solicite que registrem os resultados em uma folha avulsa para que você possa recolher e analisar o que a turma sabe. Esse é um rico material para elaborar um portifólio e acompanhar os avanços de cada aluno ao longo da sequência.
 
Nas próximas três aulas, organize a sala em grupos de quatro crianças, agrupe aquelas que possuem repertórios de cálculo semelhante e proponha, no início de cada aula, o jogo que possibilitará que cada aluno/grupo amplie seus conhecimentos de cálculo. Escolha o jogo mais adequado às necessidades dos alunos, sempre levando em conta os resultados da avaliação diagnóstica.
 
No caso dos jogos de argolas e boliche é possível variar a pontuação atribuída às garrafas para ajustar o desafio e com isso atender necessidades de todos os alunos. Para as crianças com menor desenvoltura no cálculo, proponha números redondos ou menores (somar 10+20 é muito mais fácil que calcular 18 +15. É interessante, a principio, propor somas de unidades, para construir um repertório de resultados de adição, que funcionarão como apoio para cálculos mais complexos.
 
Além disso, é importante propor somas de números redondos, o que favorece que as crianças se baseiem em resultados conhecidos de somas de um algarismo para calcular a soma de dezenas iniciadas por eles, por exemplo: saber quanto é 4+4 ajuda a saber quanto é 40+40). Para aquelas com um amplo repertório de resultados e procedimentos de cálculo, proponha números maiores, como dezenas e centenas "quebradas", por exemplo. Observe os procedimentos que os alunos utilizam para calcular e anotar os resultados dos jogos. Anote aqueles que lhe parecer mais interessantes para elaborar situações problemas.
 
Enquanto jogam, supervisione os grupos. Sempre que necessário retome as regras dos jogos, explique porque existe a necessidade de registrar os resultados, solicite que determinada criança lhe conte como fez para calcular.  Aproveite este momento para registrar bons procedimentos de cálculo e ideias que as crianças apresentaram a seus colegas de classe. Separe algumas aulas para a socialização de bons procedimentos que a turma encontrou para "calcular rápido os resultados das partidas". Depois da discussão coletiva, anote as conclusões em num cartaz e incentive a todos a consultá-las para jogar. Solicite também que eles copiem no caderno.

2ª etapa: Aproveite suas anotações para resgatar os procedimentos mais interessantes que foram utilizados pelos alunos para propor situações problemas que explorem o contexto dos jogos para as crianças resolverem com o objetivo de tornar comum determinadas estratégias de cálculo mental, que você considera importantes para sua turma e para sistematizar os repertórios de cálculo. Também é possível colocar em discussão procedimentos equivocados.

Um erro comum entre os alunos é calcular a pontuação, usando apenas a quantidade de garrafas, desconsiderando a pontuação de cada uma delas. Caso isso ocorra, levante algumas questões, como por exemplo: É possível saber quem ganhou o jogo sabendo apenas que dois alunos acertam o mesmo número de garrafas? Se um acertou apenas as amarelas, enquanto o outro acertou uma azul e outra vermelha?

Dados
 

a) Jogando 2 vezes os dois dados, qual o maior número que se pode encontrar? E o menor?

b) A professora explicou a sua sala um jogo de dados chamado "Forme 10", em que cada participante joga dois dados, e se não tiver atingido 10, pode jogar mais um dado. Depois que todos tinham jogado e entendido o jogo, desafiou a turma a encontrar todas as formas possíveis de formar 10, com dois ou três dados. Tente, você também, resolver esse desafio.

As situações problemas que abordam o jogo de dados permitem socializar um repertório de resultados de adições de um algarismo e na sua discussão a sala pode combinar um conjunto de resultados que é importante saber de memória. 

Uma possibilidade é propor que a turma preencha uma tabela (como no exemplo abaixo) para indicar quais são os cálculos que eles já sabem fazer de memória. Com o tempo os alunos irão acrescentando colunas com outros exemplos de adição e subtração. 


 Argolas:
 
a) Antonio, Lucas, Artur e Rodrigo estavam jogando argolas juntos. Nesse jogo, as garrafas tinham a seguinte pontuação:





Antonio acertou três argolas na garrafa azul e uma na amarela.
Lucas acertou uma argola na garrafa azul, uma na verde e uma na vermelha.
Artur acertou duas argolas apenas, uma na garrafa vermelha e outra na preta.
Rodrigo acertou três argolas, todas na garrafa amarela.

Quem ganhou o jogo?

b) Com que combinação de argolas na garrafa é possível atingir 100 pontos? Há mais de uma combinação possível?

Os números escolhidos para o jogo das argolas na primeira questão permite socializar e sistematizar procedimentos para somas de números terminados em 5. No segundo item, é comum que aqueles alunos com mais dificuldade podem testar cada um dos valores das argolas até encontrar a soma que resulte em 100. É importante que o professor acompanhe como as duplas estão resolvendo e, no momento da correção, peça para eles socializarem os procedimentos utilizados. Se os alunos já dominam algumas estratégias de cálculo mental, certamente eles farão algumas antecipações, como por exemplo, somar primeiro as unidades e depois as dezenas.

Boliche
 

a) Num jogo de boliche, ficou combinado que cada garrafa valeria 9 pontos. José acertou 9 garrafas e para calcular seus pontos somou 9+9+9+9+9+9+9+9+9. Lucas disse que tinha um jeito muito mais fácil e rápido de calcular. Tente descobrir, você também, um método melhor para fazer a conta de José. Depois troque ideias com seus colegas para definirem um método que seja bom para a turma.

b) Em outro jogo, as garrafas valiam 15 pontos. Quantas garrafas são necessárias acertar para fazer 30 pontos? E 60? E 90?


Atividades como essas permitem sistematizar procedimentos para adição de parcelas iguais e introduz a possibilidade de recorrer à multiplicação para encontrar o resultado. (Por exemplo, no problema a, que pede ao aluno a busca de um procedimento mais rápido que a soma reiterada de 9 para somar 9 vezes o nove, pode trazer soluções como usar a tabuada do 9 para encontrar esse resultado, multiplicando 9x9; ou via cálculo mental, em soluções como "fazer 9x10 é simples, já sabemos que é 90. 9x9 tem um 9 a menos que 9x10, então é só tirar 9 de 90, que dá 81". O professor deve socializar as diferentes resoluções e discutir com os alunos quais são as melhores formas de encontrar aquele resultado; comentando também quais são as estratégias esperadas que os alunos dominem daquele ano. O ideal é que no 4º ano todos possam usar multiplicações em problemas como estes.

3ª etapa: Proponha às crianças que elaborem novos enunciados para trocar entre si, utilizando situações dos jogos que todos conheceram e jogaram. Trata-se de uma ótima oportunidade para você avaliar o quanto aprenderam dos jogos, os cálculos que propõem, e o que explicitam ao elaborar um enunciado de problema. Discutir os enunciados com a turma e propor situações de revisão deles é uma ótima oportunidade para que todos compreendam mais sobre a lógica por trás dos problemas e as operações que cada desafio pede.

Avaliação: Faça uma nova avaliação diagnóstica para verificar o quanto os alunos avançaram em relação ao diagnóstico inicial e o que falta para que eles alcancem os objetivos esperados.

Fonte: http://rede.novaescolaclube.org.br/planos-de-aula/com-boliches-dados-e-argolas-turma-aprende-fazer-calculos

Nenhum comentário:

Postar um comentário